Annotation Worksheet: Apollo

Due: 06/21/21

These are questions related apollo and annotation. Once it has been completed, I will upload a video lecture explaining all of these topics to my YouTube channel and will provide you with a link. Feel free to type in your answers or print it out and fill it in by hand. Even if you don't have all of this memorized, this can be a good reference sheet to remind you of details should you forget later on down the line. Think of it like a study guide you would fill out for an exam in a class. A few sentences for each answer should be sufficient but this will vary. Use your own discretion but air on the side of being detailed. Feel free to include figures you find online or drawings you make if it is helpful in conveying an idea

Apollo Basics

1.) What is apollo?

2.) What is a gene model?

3.) What is a scaffold?

- 4.) What is the difference between 2.0 and 3.0?
- 5.) What is the difference between annotation and validation? Why is it necessary to do validation if a gene was previously annotated in an older version of the genome?
- 6.) What is a blat. How is it different from a BLAST. What sort of information do you get from a blat.

7.) In the following blat, explain what ID, start, score, significance and identity mean and why each are important to consider.

	-											
	Annotations Tra	icks Ref Seque	nce Search									
	Blat protein	∼ ✓All genor	me sequences S	earch Clear								
	KREKLLELMFEKYNVPAFFLVKNAVLAAFANGRATGLVFDSGATHTSAIPVHDGYVLTHAIAKSPLGGDY											
	LTMQCKQFLQENNIDIIPPYMVGGKEAIKDKEPPKWTRKKNLPEVTQSWHNYSVKKVVQDFQQSVLQVSE											
	TPFDEKSILNLPPSHYEFPNGYHQDFGVERYRIPEAVFDPNIANMQPGSGIVGASHIIYSSVSMCDVDIR											
	SSOEYEEGGKGOVI	DERCE	SVRIPASMALALIS	SANGSAERRIGAWI	GGSILASIGTFQQM			-				
(R	<u>.</u>	•		1-10 of	10		(H)					
				1-10 01								
_	ID	Start	End	Strand	 Score 	Significance	Identity	Action				
	DC3.0sc06	38,004,919	38,005,173	-1	181	0	100					
	DC3.0sc06	38,006,041	38,006,253	-1	148	0	100					
	DC3.0sc06	38,002,986	38,003,201	-1	146	0	100					
	DC3.0sc06	38,004,062	38,004,250	-1	127	0	100					
	DC3.0sc06	38,005,620	38,005,793	-1	117	0	100					
	DC3.0sc01	42,527,693	42,527,797	1	58	0	77.14					
	DC3.0sc07	3,521,833	3,521,937	1	55	0	74.29					
	DC3.0sc07	3,453,554	3,453,658	-1	55	0	74.29					
	DC3.0sc06	38,006,525	38,006,581	-1	38	0.013	100					
	DC3.0sc07	3,521,176	3,521,205	1	16	36,000	80					

- 8.) What happens if I don't select "all genome sequences" when I blat. What happens if I try blatting a nucleotide if I have inputted a protein sequence?
- 9.) Which is more specific, a peptide blat or a cDNA blat? Give an example of a specific circumstance where you would use a cDNA blat over a peptide blat.
- 10.) In the following image, circle the location box. Explain what the location tag is and why its useful. Is the location tag specific to the magnification level?

Diaci_	v3.0 IRSC training		File	View	Help				🚨 deoliveiralm@	mail.irsc.edu
0	2,000,000	4,00	0,000	6,0	000,000	8,000,000	10,000,000	12,000,000	14,000,000	16,000,000
		\rightarrow	Q	Q	Ð 🕀	DC3.0sc13 -	DC3.0sc13:15217181	15235660 (18.48 Kb)	Go 🔬 🖭	
	15,220,000				15	5,225,000		15,230,000		15,235,000
Use	r-created Annotations							12		►
						L	Jenning00440.1.1-0000	12		

- 11.) What is an AHRD predicated name? How reliable is it?
- 12.) Which ORF is being used in this exon? What is the directionality of the gene model? Circle the start or stop codon (only 1 right answer)

Diaci_v3.0 IRSC training		View Help)	🚨 deol	iveiralm@mail.irsc.edu						
0 5,000,000	10,000,000	15,000,000	20,000,000	25,000,000	30,000,000						
$ \bigcirc $	Q @ 🕀	DC3.0sc00	 DC3.0sc00:21 	89646821896557 (90 b) Go 🦨 📴						
21,896,475	21,896	,500	21,8	96,525	21,896,550						
Reference seguence	Y G W H	L V 📩	LLQDS	S W T F F E	PFLPD						
C V F + H S S L C I L A F +	L W M A L M D G	F S V T	F A R L F C K T	V D L L R R G P S S S	A I L A L R H S C L E						
AACACATAAGATCGTAAGATC	GAATACCTACCG	TAAATCACATT C K T Y	GAAAACGTTCTGA	AGCACCIGGAAGAAGCI E H V K K S	CGGTAAGAACGGAACTC						
QTNCEL KHIRAN	K H I A S I S P	NLT M <mark>M</mark> HL	V K A L S K Q L V	STSRRR RPGEE	A M R A K L L W E Q R S						
User-created Annotations											
	Dcitr00g10170.2.1										

13.) In this fragment of the gene model, label the UTR, Exons and Introns present

Diaci_v3.0 IRSC training	▼ File	View Help		🚨 dec	oliveiralm@mail.irsc.edu
0 5,000,000	10,000,000	15,000,000	20,000,000	25,000,000	30,000,000
	Q 🕀 🕀	DC3.0sc00 -	DC3.0sc00:21	89573321897168 (1.4	4 Kb) Go 🧳 👰
21,896,000		21,8	96,500		21,897,000
User-created Annotations		-		\checkmark	
		Dcit	tr00g10170.2.1		

- 14.) What is illumina sequencing? During genome sequencing, is the DNA sequenced as one continuous read? If not, explain how. How might this introduce possible errors?
- 15.) Explain what occurred here. Do you think it has a major impact on the quality of the gene model as a whole? If not, why?

16.) Compare and contrast a duplication and an artifact duplication.

- 17.) How can you check if a gene model is an artifact duplication? If it ends up being one, what steps should you take?
- 18.) How would you switch the direction a gene model is reading in the annotator box?
- 19.) Describe how you would split the following two exons

Diaci_v3.0 IRSC training	▼ File	View	Help		🔔 d	leoliveiralm@mail.irsc.edu
0 5,000,000	10,000,000	15,000	0,000	20,000,000	25,000,000	30,000,000
	Q 🕀 🕀	DC3.	0sc00 🔻	DC3.0sc00:21	89624921896887 (6	39 b) Go 🦨 🏭
3,250	21,8	896,500			21,896,	750
User-created Annotations	Deitr00a1	0170 2 1				
	Deltrough	0170.2.1				

20.) Explain how you would merge the following 2 exons.

Diaci_v3.0 IRSC training	▼ File	View	Help		🚣 de	eoliveiralm@mail.irsc.edu
0 5,000,000	10,000,000	15,000	0,000	20,000,000	25,000,000	30,000,000
	Q @ (DC3.	0sc00 🔻	DC3.0sc00:21	89627421896912 (63	39 b) 🛛 Go 🔜 🎑 💷
	21,89	6,500	21,896,750			
User-created Annotations	Dcitr00g1	0170.2.1			Dcitr00g10170.	1.1a-00001

21.) Is it possible to merge to these two exons as they are? If not, what step would you need to take first before attempting to merge them?

Diaci	i_v3.0 IRSC training	▼ File	View	Help		<u>_</u> de	oliveiralm@mail.irsc.edu	
0	5,000,000	10,000,000	15,000	0,000	20,000,000	25,000,000	30,000,000	
	$ \in $			OscOO 🔻	 DC3.0sc00:2189626621896904 (639 b) Go 			
0		,500			21,896,750			
Use	er-created Annotations	Deitr00g101	70.2.1		Þ	Deitr00a10170	1 12-00001	
		Dentrougion	/0.2.1			Deltroog10170	.1.14-00001	

- 22.) What is RNAseq? What is read depth? Does a higher or lower read depth correlate to more confidence in the RNAseq as legitimate evidence?
- 23.) What is the difference between the adult, egg and nymph RNAseq tracks?
- 24.) What is the difference (if any) between the RNAseq quantitative XY plots and the mapped reads?
- 25.) What are the 4 most reliable evidence tracks that have gene models in apollo in decreasing order of reliability? (ties don't matter)

- 26.) Under what circumstance should we choose a gene model from the other tracks in apollo even if they are "less reliable" than the 4 tracks listed in the previous question?
- 27.) What is your opinion of the following UTR based on RNAseq data? If its fine explain why and if its not then circle where the UTR should change to.

Diaci_v3.0 IRSC training	▼ File	View	Help				deoliveiralm@m	ail.irsc.edu
0 5,000,000	10,000,000		15,000,000	20,000,0	00 25,000,000	30,000,000	35,000,000	40,000
	$\rightarrow \Theta$	Q	Ð 🕀	DC3.0sc06 -	DC3.0sc06:33172969.	.33173990 (1.02 Kb) Go	🔏 💷+	
3,173,000	33,173,25	0		33,17	3,500	33,173,750		33,1
User-created Annotations								
						DCITrU6g13240.	1.1-00001	
				~				
Whole adult-XY plot				80 -				
				60 - 50 -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
				40 -	the state of the second se	and the second		
mean	me				mean	mean		
Whole Fee XX plot				200				
C millione Essenti proc								
				100			and the second	
	1.00	- L.L.			And the second sec			
mean	m	ean			mean	mean		
Whole Numph-YV plat				300 -				
C mole nympirxt plot								
maan	m	an			mean	mean		
(7) Whole adult	1		_					
Whole addit							1	
				-				
		-	-					

28.)

29.) Rate the quality of RNA seq data in descending order of quality between the 3 life stages in the following gene model. What do you think this means regarding gene expression?

30.) Which version of this exon would you choose to include in your final gene model.(Assuming the splice site errors present remain, no new ones are introduced, and the rest of the RNAseq tracks align perfectly to the one shown)

31.) Provide an outline of an example validation workflow. There is room for variance here. Not everyone validates the same. The order may vary but try to include the key elements.